Domain and Range of Exponential and Logarithmic Functions
1. Exponential Functions
An exponential function is of the form: \[ f(x) = a \cdot b^x, \] where:
- \(a \neq 0\): A constant that determines the vertical stretch or reflection.
- \(b > 0\) and \(b \neq 1\): The base of the exponential.
Domain and Range
Domain: The domain of any exponential function is:
\[
(-\infty, \infty),
\]
because the base \(b^x\) is defined for all real numbers \(x\).
Range: The range depends on \(a\):
- If \(a > 0\), the range is: \[ (0, \infty). \]
- If \(a < 0\), the range is: \[ (-\infty, 0). \]
Example 1: Exponential Growth
Consider: \[ f(x) = 2^x. \] Domain: \[ (-\infty, \infty). \] Range: \[ (0, \infty), \] because \(f(x)\) is always positive.
Example 2: Exponential Decay
Consider: \[ f(x) = -3 \cdot (0.5)^x. \] Domain: \[ (-\infty, \infty). \] Range: \[ (-\infty, 0), \] because \(f(x)\) is always negative.
2. Logarithmic Functions
A logarithmic function is of the form: \[ f(x) = a \cdot \log_b(x), \] where:
- \(a \neq 0\): A constant determining the vertical stretch or reflection.
- \(b > 0\) and \(b \neq 1\): The base of the logarithm.
Domain and Range
Domain: The domain of any logarithmic function is:
\[
(0, \infty),
\]
because logarithms are defined only for positive inputs.
Range: The range of any logarithmic function is:
\[
(-\infty, \infty),
\]
because logarithms can output all real numbers.
Example 3: Basic Logarithmic Function
Consider: \[ f(x) = \log_2(x). \] Domain: \[ (0, \infty). \] Range: \[ (-\infty, \infty). \]
Example 4: Reflected Logarithmic Function
Consider: \[ f(x) = -\log_5(x). \] Domain: \[ (0, \infty). \] Range: \[ (-\infty, \infty). \]
3. Applications
Example 5: Compound Interest
The formula for compound interest is: \[ A = P \cdot \left(1 + \frac{r}{n}\right)^{n \cdot t}, \] where:
- \(A\): Final amount.
- \(P\): Principal (initial investment).
- \(r\): Annual interest rate (in decimal).
- \(n\): Number of compounding periods per year.
- \(t\): Time in years.
Problem: A principal of $2000 is invested at an annual interest rate of 5%, compounded monthly. Find the amount after 10 years.
Solution:
The formula for compound interest is:
\[
A = P \cdot \left(1 + \frac{r}{n}\right)^{n \cdot t}.
\]
Substitute the given values:
\[
A = 2000 \cdot \left(1 + \frac{0.05}{12}\right)^{12 \cdot 10}.
\]
Step-by-step calculation:
- \(1 + \frac{0.05}{12} = 1.004167\).
- \(12 \cdot 10 = 120\).
- \((1.004167)^{120} \approx 1.647009\).
- \(A = 2000 \cdot 1.647009 \approx 3294.02\).
Final Answer: The amount is approximately $3294.02.
Example 6: Half-Life of Radioactive Decay
The formula for radioactive decay is: \[ A(t) = A_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{h}}, \] where:
- \(A(t)\): Remaining amount at time \(t\).
- \(A_0\): Initial amount.
- \(h\): Half-life of the substance.
Solution: \[ A(36) = 500 \cdot \left(\frac{1}{2}\right)^{\frac{36}{12}}. \] Calculate step-by-step:
- \(\frac{36}{12} = 3\).
- \(\left(\frac{1}{2}\right)^3 = \frac{1}{8} = 0.125\).
- \(A(36) = 500 \cdot 0.125 = 62.5.\)
4. Practice Questions
- Find the domain and range of \(f(x) = 4^x\).
- Find the domain and range of \(f(x) = \log_3(x)\).
- A sum of $1000 is invested at an annual interest rate of 8%, compounded quarterly. Find the amount after 5 years.
- The half-life of a radioactive substance is 6 years. If the initial mass is 80 g, how much remains after 24 years?
- Solve for \(x\): \(3^x = 81\).
- Solve for \(x\): \(\log_4(x) = 2\).
- Explain why the range of \(f(x) = e^x\) is \((0, \infty)\).
- Prove that the domain of \(f(x) = \ln(x)\) is \((0, \infty)\).
5. Answers
- Domain: \((- \infty, \infty)\); Range: \((0, \infty)\).
- Domain: \((0, \infty)\); Range: \((- \infty, \infty)\).
- \[ A = 1000 \cdot \left(1 + \frac{0.08}{4}\right)^{4 \cdot 5} \approx 1485.95. \]
-
The formula for radioactive decay is:
\[
A(t) = A_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{h}}.
\]
Substituting the values:
\[
A(24) = 80 \cdot \left(\frac{1}{2}\right)^{\frac{24}{6}}.
\]
Step-by-step calculation:
- \(\frac{24}{6} = 4\).
- \(\left(\frac{1}{2}\right)^4 = \frac{1}{16} = 0.0625\).
- \(A(24) = 80 \cdot 0.0625 = 5 \, \text{g}.\)
Add comment
Comments